Practice Test cap6930 Game Physics

Abstract

Name:

IMPORTANT: If you need to make simple, reasonable assumptions to arrive at an answer, state any such assumption. An answer 'yes' or 'no' is worth 0 points if it does not explain the reasoning. Write answers cleanly on the space provided. Use the back of the previous page if more space is needed.

1 ODE basics

- Consider a box filled with n particles all of the same charge. There is no gravity. What formula(s) describes how the particles interact? [5 points]
- How can one avoid computing $n^{2} / 2$ pairwise interactions of the charged particles when re-solving the interaction? [5 points]

2 Numerical treatment of ODE s

- Perform two explicit (forward) Euler steps of step length (time increment) $h=$ $1 / 10$ on the initial value problem $u^{\prime}(t)=-u(t)+t+1$ for t in the unit interval [0.1] with starting value for u at $t=0$ of 1 . [15 points]
- Write $u^{\prime \prime}(t)+u(t)=t$ as a linear first-order system (where ' indicates derivative with respect to the only variable t). [5 points]

3 Collisons

- Can bounding box overlap testing prove that two objects do not intersect? Explain. [10 points]
- Draw the smallest 8 -dop for a disk with radius 1 centered at the origin. [5 points]
- What are the barycentric coordinates of the point $(1,1)$ with respect to the triangle with vertices $(0,0)(1,0)(0,1)$? [5 points]

4 Collison Response

- Write the quaternion for rotating about the axis $(1,0,0)$ by 60°. Write the corresponding Euler rotation matrix. [10 points]
- Object A with mass $m_{A}=1$ collides fully elastic with object B of the same mass. At the time of impact, both had the same speed but opposite velocity travelling on the x-axis. What can be said about the velocity of A and B after collision? [10 points]
- How does the coefficient of restitution affect the colision? [5 points]

5 Explain concepts

In a sentence or two (or a good picture) explain [4 points each]

- Kinematics vs Dynamics.
- Conservation of momentum in collision and conservation of momentum in fluids.
- Fluid drag and friction.
- SPH and kernel

6 Fluids

- List the governing equations of fluid flow. [4 points]
- What numerical technique can one use to compute the fluid velocity at the next time step? [5 points]
- Contrast the two types of approaches of computing fluid flow. [5 points]

7 Elasticity - will not be on the in-class test

- What is a finite element? [5 points]
- What is a thin shell model? [5 points]
- Given a square as a standard domain, explain how an iso-parametric element is computed on the physical domain with vertices $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$. [10 points]
- Compute the Green strain when twisting a cube in counterclockwise fashion about its x-axis. [10 points]

